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Exact equations and scaling relations forf_0 avalanche in the Bak-Sneppen evolution model
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An infinite hierarchy of exact equations is derived for the newly obsef_\,jew/alanche in the Bak-Sneppen
model. By solving the first-order exact equation, we find that the critical exponegdverning the divergence
of the average avalanche size, is exactlyffdr all dimensiong which has been confirmed by extensive
simulations. Solution of the gap equation yields another universal result (p is the exponent of relaxation
to attractoy. Scaling relations are established among the critical exponents, (D, o, andv) for thef_o
avalanche.

PACS numbds): 87.10+¢€, 05.40-a, 05.65+b

In the Bak-SnepperiBS) evolution model[1], random  while the distribution of the sizespatial and temporglof
numbersf;, chosen from a flat distribution between 0 and 1,avalanches, i.e., the “fingerprint,” should be robust with re-
p(f), are assigned independently to each species located orspect to the modifications, due to the universality of com-
d-dimensional lattice of linear size. At each time step, the plexity and the definition of self-organized criticali€@OO
extremal site, i.e., the species with the smallest random nuni8]. In this sense, the extent of what we know about an ava-
ber, and its & nearest neighboring sites, are assigned 2 lanche will determine to what extent we know a complex
+1 new random numbers also chosen frpf). This up-  system. Avalanche dynamics provides insight into complex-
dating continues indefinitely. After a long transient processty, and enables one to further investigate the system studied.
the system reaches a statistically stationary state where the Though avalanche dynamics may be a possible underly-
density of random numbers in the system is uniform abovéng mechanism of complexity, the definitions of avalanches
f. (the self-organized threshgldand vanishes fof <f.. can be vastly different for various complex systems, or for

Despite the fact that it is an oversimplification of a real same sorts of systems, even for the same one. In the BTW
biological process, the BS model exhibits such common inmodel[9], an avalanche is caused by the adding of a grain or
teresting features observed by paleontolodigt8] as punc- several grains of sand into the system. The avalanche is con-
tuated equilibria, power-law probability distributions of life- sidered when the heights of all the sites are less than critical
times of species, and sizes of extinction events. Thesealue, say, 4. In the BS mod€l, 6], several types of ava-
behaviors suggest that the ecology of interacting specielanches, for instance, thfg avalanche, th&(s) avalanche,
might have evolved to a self-organized critical state. the forward avalanche, backward avalanche, etc., are pre-

The BS model displays spatial-temporal complexity,sented. These different definitions of avalanches may show
which also emerges from many natural phenomena, such amique hierarchal structures, while they manifest common
fractals[4], 1/f noise[5], etc. This strongly suggests that fractal feature of the complex system, that is, SOC. It can be
various complex behaviors may be attributed to a commorinferred that various types of avalanches are equivalent in the
underlying mechanism. The authors of RES] suggested sense that they imply complexity.
that the relation of these different phenomena can be estab- Since similar structures and common features evidently
lished on the basis of their unigue models. It was even proarise in different types of avalanches, it is straightforward
posed by them that spatial-temporal complexity comes out athat various avalanches differ from each other only in the
a direct result of avalanche dynamics in driven systems, andontexts from which one comprehends them. As is known,
different complex phenomena are related via scaling relathe major aim of avalanche study is to investigate the uni-
tions to the fractal properties of the avalanches. It can henceersal rules possibly hidden behind the evolution of the sys-
be inferred that avalanche dynamics plays a key role in deatems or the models. Hence the means of understanding the
ing with complex systems, especially when one needs tavalanches appears crucial. Better ways may enable one to
know the macroscopic features of the systems, since lingeknow more about the system or the model, and hence to have
ing on the inner structure of individuals will not be helpful a better comprehension of the features corresponding to
[7]. complexity. From this point of view, when studying ava-

An avalanche is a kind of macroscopic phenomenorianches one should try to choose easier ways instead of more
driven by local interactions. The size of an avalanche may bdifficult ones.
extremely sensitive to the initial configuration of the system, The evolution of the highly sophiscated BS model shows

a hierarchal structure specified by avalanches, which corre-

spond to sequential mutations below a certain threshold. It
*Electronic address: liw@iopp.ccnu.edu.cn has been notefl10] that in the BS model an avalanche is
"Electronic address: xcai@wuhan.cngb.com initiated when the fitness of the globally extremal ditiee
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species with the least random numbierlarger than the self- where (S)g(5) denotes the average size of avalanches that

organized threshold. That is, the triggering event of an avagccyrr during the gag(s) when f<F(s). This exact gap
lanche is directly related to the fitness, the feature of i”di'equation will be exactly solved in this paper.

viduals. In other words, the avalanche is directly associated SianalsT( lav i tant roles in defining thb.
with the feature of individuals instead of general features of ='9"&'S (s) play important ro esll.n efining thiy, ava-
the ecosystem as a whole. Is it feasible that the avalanchdanche. For any value of the auxiliary paramefgr (0.5

are directly caused by the global feature of the whole sys<f;<1.0), anf_o avalanche of sizeS is defined as a se-

tem? Can such a global feature be expressed in terms of thgjence ofS—1 successive events whdiis)<f, confined
corresponding quantity? If such a quantity is found and Sucrﬂ)etween two events whef_r(s) >f—0. This definition ensures

avalanches observed, may the new avalanches provide a Ngib+ e mytation events during an avalanche are spatially

i i ' i 2 .
anc(i)eaa?r way o investigate Opropertlets gf thehm%qfil' N and temporally correlated. It can also guarantee the hierar-
ne of our previous workEl0] presented such a differen chal structure of the avalanches: larger avalanches consist of

hierarchy of avalanche(a;hefo_avalanchhfor the BS model. smaller ones. A4, is raised, smaller avalanches gather to-

We defined a global quantity which denotes th_e average gother and form larger ones. The statisticg pfvill inevita-
fitness of the system. The new avalanches are directly relat = — L
y have a cutoff iffy is not chosen to bé;. This will not

to f. In this paper, we present a master equation for the ) e = -
. pap vep q. affect the size distribution, providef) approaches.. Ex-
hierarchal structure of, avalanches. It prescribes the cas- —

cade process of smaller avalanches merging into larger avciﬁnSiVe si_mul_ations show that exponentsf fo-ava_\lanch_e
. — . size distribution are 1.800 and 1.725 for one-dimensional
lanches when the critical paramefgris changed. An infinite (1D) and 2D BS models, respectively, amazingly different

series of exact equations can be derived from this mast fom the counterparts of thé, avalanche, 1.07 and 1.245
equation. The first order exact equation,togetherwithasca} e )

ing ansatz of the average sizes of avalanches, shows the dfJ: This strengthens the speculation that tgevalanche is
act result of y, the critical exponent governing self- a different type of avalanche, distinguished from any types

organization, to be universally 1 for all dimensional Bs °f avalanches found previously. _
models, which has been confirmed by extensive simulations Denote byP(S,f,) the probability of acquiring affi, ava-
of the model. We also establish scaling relations related téanche of sizeS. The signalsf(s) [fo<f(s)<fy+dfy] will
some critical exponents for thig avalanche, and make pre- stopf, avalanches and nof {+df,) avalanches. That is, as
dictions on the values of some exponents. f, is raised by an infinitesimal amounif,, somef, ava-
The quantityf is a global one of the ecosystem and can beanches merge together to form largég € df,) avalanches.

expected 1o involve some general information about theI'his exhibits the hierarchal structure bf avalanches, and

whole system. It may represent the average population Qi ne prescribed by the exact master equation below. In
living capability of the whole species system. A larder some sense, the master equation reflects the "flow” of prob-

shows that the average population is immense or the averag@jlity of avalanche size distribution with respect to the
living capability is great, and vice versh.is defined as change inf,.

Simulations show thaTapproaches?c, and remains sta-
Ld tistically stable in the critical state. This feature is greatly
i Z f (1) different from the feature of ,,;, (the fitness of the globally
[l _
i=1

Ld extremal sit¢ which can vary between 0 and L.in the
critical state fluctuates slightly arourfd. Therefore, thef

wheref; is the fitness of théth species of a system consist- avalanches will have no good statisticsf§f is chosen as a

ing of LY species. Let the BS model start to evolve. At eachvalue far less tharf., since there only exist smaller ava-
time step of the evolution, apart from the random numbers of@nches in the model. To acquire a better and reasonable
the globally extremal site and itsd2nearest neighboring distribution offy-avalanche sizes, one should choose a value

sites, the signal is also tracked. Initiallyf_tends to increase of fy under the conditiorfy— f.. It should be emphasized
stepwisely. As the evolution continues furthérapproaches that the master equation listed below is also valid fgr

a critical valuef, and remain statistically stable aroufigl. —f..

The plot of f versus time steps shows that the increasing Both theoretical analysis and extensive simulations sug-
signals off follow a Devil's staircasé8], which implies that ~ 9est that the signalf(s) which terminatef, avalanches are

a punctuated equilibrium emerges. DenB{s) as the gap of uncorrelated and evenly distributed betwedsq,{;), pro-

the punctuated equilibrium. Actuallf5(s) tracks the peaks vided thatf,—f. The direct consequence of this observa-
in f. After some careful derivation one can write an exacttion is that the probability of aff_o avalanche merging to
gap equatiori6,10] (fo+df,) avalanche is prescribed lohfo/(f.—fo). It is im-
portant to note that any two subsequent avalanches must be
mutually independent for the following arguments to be true.

= , ) In other words, the probability distribution 675 avalanches,
ds Ld<S>F(s) initiated immediately after the termination of §mnavalanche

dF(s) f—F(s)
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of sizeS, must be independent & This is true because in
the BS model the dynamics within &g avalanche is com-

pletely independent of the particular value of the signals/\
f(s)>T, in the background that were left by the previous V

avalanches.

Here we present the master equationﬂ}d;s raised by an
infinitesimal amound?o, the probability “flowing” out of
the size distribution of f, avalanches is given by
P(S,fo)[dfe/(f.—fo)], while the probability “flowing” in
is given by S8 1[P(S;,fo)/(fo— o) IP(S=Sy,fo). If fo

—f. anddf,—0, one can write the master equation as

— dP(S,To)
Jfo
S-1
<Sfo>+2 P(S;,fo)P(S—S1,fo). (3)
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FIG. 1. The average size of avalanci&s vs (f.—f,) for (a)

1D and (b) 2D Bak-Sneppen evolution models. The asymptotic
slope yieldsy=0.99+0.01 and 0.98 0.01, respectively.
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The first term on the right hand side of the equation ex-

presses the loss of avalanches of stzéue to the merging

with the subsequent one, while the second one describes the

gain inP(S, 1, o) due to merging of avalanches of si@gwith
avalanches of siz8—S,;.

In order to investigate the exact master equation it is con-

venient to make some variable changes. Defire— In(f_
—fo) Thereforefo—f corresponds thh= + . Since in the

master equatlomo is chosen to be close th h varies from
a very large number te- . Due to the variable change the
variableh is chosen from the distributioR(h)=e ™", which

1
1-(SnB+ !<52>h,32—§<53>h,33+-“

1 1
:{<S>h,3_ E(Sz)hﬂz—l— §<53>h,33+ .. }

1 1
—1+(SnB— 57 (S + g (SHnB+ - }

(6)
Since EQq.(6) holds for arbitrary3, comparing the coeffi-

seems to be more “natural.” In what follows we will use the cients of different powers of in the above Taylor series
new variableh instead offo The master equation can be gives an infinite series of exact equations. Comparison of the

rewritten, in terms oh, as

S-1

=

ah

(4)

Making a Laplace transformation of E¢4), after some
calculation, one obtains

dIn[1—p(B.M]

oh ©)

p(B.h),

where p(8,h)==¢_,;P(S,h)e #S. This exact equation is

coefficients ofB? results in

Jd |n<S>h B
oh

)

Equation (7) is extremely interesting. Changing variabie
back intof,, one can obtain the “gamma” equati¢f,11]

dIn(S)7, 1
— = —— (8)
dfy fo—fo
Inserting the scaling ansatg] (S}T(va(f_c—f_o)‘y into Eq.
(8), one immediately obtains an interesting result
y=1. 9

the key to this work. Many interesting physical features carlt should be noted thag=1 is universal, that is, independent

be derived from it. Ash<+, the avalanche size will have
a cutoff. The normalization oP(S,h) can be expressed as
p(0h)==%_,P(S,h)=1. Expanding both sides of E¢5)
as Taylor series throughout a neighborhood of the pgint
=0, one can immediately obtain

of the dimension. The value of for f; avalanches is differ-
ent from those for thé, avalanche found in Ref6], which

are 2.70 and 1.70 for 1D and 2D BS models, respectively.
Extensive simulations showy=0.99+0.01 and y=0.98
+0.01 for 1D and 2D BS models, respectively. Figure 1
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shows our simulation results, which confirms the universaDue to the compactned$] of avalanches, we hav§;,
resulty=1. ~r50:(Af)—VD; thus

Higher powers ofB give new exact equations. Here we
present the first two:

1 1
d ((SH)n y=—= (14
%( S =2(S), (10 oD (2—-7)D
3 2\ 2
i (S — (S =(?). (11) Equationg11) and(12) establish scaling relations among the
dh| 3(S)n 2(S)ﬁ critical exponents, and they imply that the self-organization

. time to reach the critical state is independent of the initial
Next we present the solution of the exact gap equatiofifor configuration of the system. A system of sizeeaches the
avalanches. Inserting the scaling relatiqi$)g s~ [f. stationary state wheff(s)] “~L. It can be inferred from
—F(s)] ! into the equation and integrating, one obtains  Egs.(11) and(12) that, if one chooses andD as two inde-
- . pendent exponents, other exponents can be expressed in
fls)=F— F(s)~(i) _ ( i) (12) terms of them. Among the six exponents mentioned above,
Ld/ andD can be numerically measurgti0], andy andp can be
analytically obtained, whilex and o are difficult to explore
wherep is the exponent of the relaxation to the attra¢@®r  despite the fact that some methods measuring the corre-
Thus we obtainp=1. Interestingly,p is also a universal sponding exponents fof, avalanches were introduced in
exponent for all dimensional BS models. It shows that theref.[13]. Therefore, we can rely on the scaling relations and
critical point (Af=0) is approached algebraically with an values of the exponents obtained to predict the values of
exponent—1. and o. We predicto=0.2 (one dimensionand 0.275(two
Up to now, we have obtained some exponents of corredimension$, »=2.04(one dimensiopand 1.17(two dimen-
sponding physical properties df, avalanchesr, the ava-  sions.
lanche size distributiori10]; D, the avalanche dimension Comparing thef_o avalanche with the, avalanche, we
[10]; v, the average avalanche sigE0]; and p, the relax-  find that the former is more readily treated. Two critical ex-
ation to the attractof6]. Recall another two exponerf§] »  ponents can be analytically obtained, and are found to be
and o, which are defined as.,~(f.—fo) " and Seoc=(f.  universal for all dimensional BS models. Furthermore, the
—fo) Y7, respectively. Here, and S,, are referred to as infinite hierarchy of exact equations and the exact gap equa-
the cutoff of the spatial extent of avalanchdse to the limit  tions, together with their solutions, provide an exclusive in-
system sizgand that of the avalanche sizdue to the fact vestigation of the new type of avalanche. Another asset of

that fo is not chosen ag.), respectively. It is natural to the f, avalanche is that it involves some information con-

establish some scaling relations of these exponentd for cerning the whole system. It can be concluded thatfthe
avalanches similar to those found in R€#,12] for fy ava-  avalanche does enable us to comprehend the complex system
lanches. Nevertheless, these two types of avalanches mamiom an effective and different context. The weak point of
fest similar fractal properties. Hence some common featuregis avalanche is that it loses some knowledge of individuals.
should_be shared by them. Integrating the equafih |t is still unknown how these individual features will matter.
f(f o fo) = Sp(g fo)dS and the scaling (S)~(f, It is worthwhile to investigate the avalanche dynamics fur-

—fo) 1 results in ther in the future.

This work was supported in part by NSFC in China and

_ 2— T_ 1 (13) Hubei-NSF. X.C. thanks T. Meng for hospitality during his
Lo ' stay in Berlin.

[1] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993. [8] P. Bak,How Nature WorkgCopernicus, New York, 1996
[2] S. J. Gould, Paleobiolog®, 135(1977. [9] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&&%.381
[3] M. D. Raup, Scienc51, 1530(1986. (1987; Phys. Rev. A38, 364 (1988.
[4] B. B. Mandelbrot,The Fractal Geometry of Naturgreeman,  [10] W. Li and X. Cai, Phys. Rev. B1, 771(2000.

New York, 1983. [11] S. Maslov, Phys. Rev. Let?7, 1182(1996.
[5] W. H. Press, Comments. Astrophy’.103 (1978. [12] M. Paczuski, S. Malsov, and P. Bak, Europhys. L&it, 97
[6] M. Paczuski, S. Maslov, and P. Bak, Phys. RevcE 414 (1994

(1998. . » ) _ o [13] B. Jovanovic, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
[7] R. Badii and A. Politi, Complexity (Cambridge University Phys. Rev. B50, 2403(1994).

Press, London, 1997



