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Exact equations and scaling relations forf̄ 0 avalanche in the Bak-Sneppen evolution model
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~Received 9 November 1999!

An infinite hierarchy of exact equations is derived for the newly observedf̄ 0 avalanche in the Bak-Sneppen
model. By solving the first-order exact equation, we find that the critical exponentg, governing the divergence
of the average avalanche size, is exactly 1~for all dimensions!, which has been confirmed by extensive
simulations. Solution of the gap equation yields another universal resultr51 (r is the exponent of relaxation

to attractor!. Scaling relations are established among the critical exponents (g, t, D, s, and n) for the f̄ 0

avalanche.

PACS number~s!: 87.10.1e, 05.40.2a, 05.65.1b
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In the Bak-Sneppen~BS! evolution model@1#, random
numbersf i , chosen from a flat distribution between 0 and
p( f ), are assigned independently to each species located
d-dimensional lattice of linear sizeL. At each time step, the
extremal site, i.e., the species with the smallest random n
ber, and its 2d nearest neighboring sites, are assignedd
11 new random numbers also chosen fromp( f ). This up-
dating continues indefinitely. After a long transient proce
the system reaches a statistically stationary state where
density of random numbers in the system is uniform ab
f c ~the self-organized threshold!, and vanishes forf , f c .

Despite the fact that it is an oversimplification of a re
biological process, the BS model exhibits such common
teresting features observed by paleontologists@2,3# as punc-
tuated equilibria, power-law probability distributions of life
times of species, and sizes of extinction events. Th
behaviors suggest that the ecology of interacting spe
might have evolved to a self-organized critical state.

The BS model displays spatial-temporal complexi
which also emerges from many natural phenomena, suc
fractals @4#, 1/f noise @5#, etc. This strongly suggests th
various complex behaviors may be attributed to a comm
underlying mechanism. The authors of Ref.@6# suggested
that the relation of these different phenomena can be es
lished on the basis of their unique models. It was even p
posed by them that spatial-temporal complexity comes ou
a direct result of avalanche dynamics in driven systems,
different complex phenomena are related via scaling r
tions to the fractal properties of the avalanches. It can he
be inferred that avalanche dynamics plays a key role in d
ing with complex systems, especially when one needs
know the macroscopic features of the systems, since lin
ing on the inner structure of individuals will not be helpf
@7#.

An avalanche is a kind of macroscopic phenomen
driven by local interactions. The size of an avalanche may
extremely sensitive to the initial configuration of the syste
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while the distribution of the sizes~spatial and temporal! of
avalanches, i.e., the ‘‘fingerprint,’’ should be robust with r
spect to the modifications, due to the universality of co
plexity and the definition of self-organized criticality~SOC!
@8#. In this sense, the extent of what we know about an a
lanche will determine to what extent we know a compl
system. Avalanche dynamics provides insight into compl
ity, and enables one to further investigate the system stud

Though avalanche dynamics may be a possible unde
ing mechanism of complexity, the definitions of avalanch
can be vastly different for various complex systems, or
same sorts of systems, even for the same one. In the B
model@9#, an avalanche is caused by the adding of a grain
several grains of sand into the system. The avalanche is
sidered when the heights of all the sites are less than cri
value, say, 4. In the BS model@1,6#, several types of ava
lanches, for instance, thef 0 avalanche, theG(s) avalanche,
the forward avalanche, backward avalanche, etc., are
sented. These different definitions of avalanches may sh
unique hierarchal structures, while they manifest comm
fractal feature of the complex system, that is, SOC. It can
inferred that various types of avalanches are equivalent in
sense that they imply complexity.

Since similar structures and common features evide
arise in different types of avalanches, it is straightforwa
that various avalanches differ from each other only in
contexts from which one comprehends them. As is know
the major aim of avalanche study is to investigate the u
versal rules possibly hidden behind the evolution of the s
tems or the models. Hence the means of understanding
avalanches appears crucial. Better ways may enable on
know more about the system or the model, and hence to h
a better comprehension of the features corresponding
complexity. From this point of view, when studying av
lanches one should try to choose easier ways instead of m
difficult ones.

The evolution of the highly sophiscated BS model sho
a hierarchal structure specified by avalanches, which co
spond to sequential mutations below a certain threshold
has been noted@10# that in the BS model an avalanche
initiated when the fitness of the globally extremal site~the
5630 ©2000 The American Physical Society
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species with the least random number! is larger than the self-
organized threshold. That is, the triggering event of an a
lanche is directly related to the fitness, the feature of in
viduals. In other words, the avalanche is directly associa
with the feature of individuals instead of general features
the ecosystem as a whole. Is it feasible that the avalan
are directly caused by the global feature of the whole s
tem? Can such a global feature be expressed in terms o
corresponding quantity? If such a quantity is found and s
avalanches observed, may the new avalanches provide a
and easier way to investigate properties of the model?

One of our previous works@10# presented such a differen
hierarchy of avalanches~the f̄ 0 avalanche! for the BS model.
We defined a global quantityf̄ which denotes the averag
fitness of the system. The new avalanches are directly rel
to f̄ . In this paper, we present a master equation for
hierarchal structure off̄ 0 avalanches. It prescribes the ca
cade process of smaller avalanches merging into larger
lanches when the critical parameterf̄ 0 is changed. An infinite
series of exact equations can be derived from this ma
equation. The first order exact equation, together with a s
ing ansatz of the average sizes of avalanches, shows th
act result of g, the critical exponent governing sel
organization, to be universally 1 for all dimensional B
models, which has been confirmed by extensive simulati
of the model. We also establish scaling relations related
some critical exponents for thef̄ 0 avalanche, and make pre
dictions on the values of some exponents.

The quantityf̄ is a global one of the ecosystem and can
expected to involve some general information about
whole system. It may represent the average population
living capability of the whole species system. A largerf̄
shows that the average population is immense or the ave
living capability is great, and vice versa.f̄ is defined as

f̄ 5
1

Ld (
i 51

Ld

f i , ~1!

where f i is the fitness of thei th species of a system consis
ing of Ld species. Let the BS model start to evolve. At ea
time step of the evolution, apart from the random number
the globally extremal site and its 2d nearest neighboring
sites, the signalf̄ is also tracked. Initially,f̄ tends to increase
stepwisely. As the evolution continues further,f̄ approaches
a critical valuef̄ c and remain statistically stable aroundf̄ c .
The plot of f̄ versus time steps shows that the increasin
signals off̄ follow a Devil’s staircase@8#, which implies that
a punctuated equilibrium emerges. DenoteF(s) as the gap of
the punctuated equilibrium. Actually,F(s) tracks the peaks
in f̄ . After some careful derivation one can write an exa
gap equation@6,10#

dF~s!

ds
5

f̄ c2F~s!

Ld^S&F(s)

, ~2!
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where ^S&F(s) denotes the average size of avalanches

occurr during the gapF(s) when f̄ ,F(s). This exact gap
equation will be exactly solved in this paper.

Signals f̄ (s) play important roles in defining thef̄ 0 ava-

lanche. For any value of the auxiliary parameterf̄ 0 (0.5
, f̄ 0,1.0), an f̄ 0 avalanche of sizeS is defined as a se
quence ofS21 successive events whenf̄ (s), f̄ 0 confined
between two events whenf̄ (s). f̄ 0. This definition ensures
that the mutation events during an avalanche are spat
and temporally correlated. It can also guarantee the hie
chal structure of the avalanches: larger avalanches consi
smaller ones. Asf̄ 0 is raised, smaller avalanches gather
gether and form larger ones. The statistics off̄ 0 will inevita-
bly have a cutoff if f̄ 0 is not chosen to bef̄ c . This will not
affect the size distribution, providedf̄ 0 approachesf̄ c . Ex-
tensive simulations show that exponentst of f̄ 0-avalanche
size distribution are 1.800 and 1.725 for one-dimensio
~1D! and 2D BS models, respectively, amazingly differe
from the counterparts of thef 0 avalanche, 1.07 and 1.24
@6#. This strengthens the speculation that thef̄ 0 avalanche is
a different type of avalanche, distinguished from any typ
of avalanches found previously.

Denote byP(S, f̄ 0) the probability of acquiring anf̄ 0 ava-
lanche of sizeS. The signalsf̄ (s) @ f̄ 0, f̄ (s), f̄ 01d f̄0# will
stop f̄ 0 avalanches and not (f̄ 01d f̄0) avalanches. That is, a
f̄ 0 is raised by an infinitesimal amountd f̄0 , some f̄ 0 ava-
lanches merge together to form larger (f̄ 01d f̄0) avalanches.
This exhibits the hierarchal structure off̄ 0 avalanches, and
will be prescribed by the exact master equation below.
some sense, the master equation reflects the ’’flow’’ of pr
ability of avalanche size distribution with respect to t
change inf̄ 0.

Simulations show thatf̄ approachesf̄ c , and remains sta-
tistically stable in the critical state. This feature is grea
different from the feature off min ~the fitness of the globally
extremal site!, which can vary between 0 and 1.f̄ in the
critical state fluctuates slightly aroundf̄ c . Therefore, thef̄ 0

avalanches will have no good statistics iff̄ 0 is chosen as a
value far less thanf̄ c , since there only exist smaller ava
lanches in the model. To acquire a better and reason
distribution of f̄ 0-avalanche sizes, one should choose a va
of f̄ 0 under the conditionf̄ 0→ f̄ c . It should be emphasized
that the master equation listed below is also valid forf̄ 0

→ f̄ c .
Both theoretical analysis and extensive simulations s

gest that the signalsf̄ (s) which terminatef̄ 0 avalanches are
uncorrelated and evenly distributed between (f̄ 0 , f̄ c), pro-
vided that f̄ 0→ f̄ c . The direct consequence of this observ
tion is that the probability of anf̄ 0 avalanche merging to
( f̄ 01d f̄0) avalanche is prescribed byd f̄0 /( f̄ c2 f̄ 0). It is im-
portant to note that any two subsequent avalanches mus
mutually independent for the following arguments to be tru
In other words, the probability distribution off̄ 0 avalanches,
initiated immediately after the termination of anf̄ 0 avalanche
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of sizeS, must be independent ofS. This is true because in

the BS model the dynamics within anf̄ 0 avalanche is com-
pletely independent of the particular value of the sign

f̄ (s). f̄ 0 in the background that were left by the previo
avalanches.

Here we present the master equation. Asf̄ 0 is raised by an

infinitesimal amountd f̄0, the probability ‘‘flowing’’ out of

the size distribution of f̄ 0 avalanches is given by

P(S, f̄ 0)@d f̄0 /( f̄ c2 f̄ 0)#, while the probability ‘‘flowing’’ in

is given by (S151
S21 @P(S1 , f̄ 0)/( f̄ c2 f̄ 0)#P(S2S1 , f̄ 0). If f̄ 0

→ f̄ c andd f̄0→0, one can write the master equation as

~ f̄ c2 f̄ 0!
]P~S, f̄ 0!

] f̄ 0

52P~S, f̄ 0!1 (
S151

S21

P~S1 , f̄ 0!P~S2S1 , f̄ 0!. ~3!

The first term on the right hand side of the equation
presses the loss of avalanches of sizeS due to the merging
with the subsequent one, while the second one describe

gain inP(S, f̄ 0) due to merging of avalanches of sizeS1 with
avalanches of sizeS2S1.

In order to investigate the exact master equation it is c

venient to make some variable changes. Defineh52 ln( f̄c

2 f̄0). Therefore,f̄ 05 f̄ c corresponds toh51`. Since in the

master equationf̄ 0 is chosen to be close tof̄ c , h varies from
a very large number to1`. Due to the variable change th
variableh is chosen from the distributionP(h)5e2h, which
seems to be more ‘‘natural.’’ In what follows we will use th

new variableh instead of f̄ 0. The master equation can b
rewritten, in terms ofh, as

]P~S,h!

]h
52P~S,h!1 (

S151

S21

P~S,h!P~S2S1 ,h!. ~4!

Making a Laplace transformation of Eq.~4!, after some
calculation, one obtains

] ln@12p~b,h!#

]h
5p~b,h!, ~5!

where p(b,h)5(S51
` P(S,h)e2bS. This exact equation is

the key to this work. Many interesting physical features c
be derived from it. Ash,1`, the avalanche size will hav
a cutoff. The normalization ofP(S,h) can be expressed a
p(0,h)5(S51

` P(S,h)51. Expanding both sides of Eq.~5!
as Taylor series throughout a neighborhood of the poinb
50, one can immediately obtain
s

-

the

-

n

]

]h F12^S&hb1
1

2!
^S2&hb22

1

3!
^S3&hb31•••G

5F ^S&hb2
1

2!
^S2&hb21

1

3!
^S3&hb31•••G

3F211^S&hb2
1

2!
^S2&hb21

1

3!
^S3&hb31•••G .

~6!

Since Eq.~6! holds for arbitraryb, comparing the coeffi-
cients of different powers ofb in the above Taylor series
gives an infinite series of exact equations. Comparison of
coefficients ofb1 results in

] ln^S&h

]h
51. ~7!

Equation ~7! is extremely interesting. Changing variableh

back into f̄ 0, one can obtain the ‘‘gamma’’ equation@6,11#

d ln^S& f̄ 0

d f̄0

5
1

f̄ c2 f̄ 0

. ~8!

Inserting the scaling ansatz@6# ^S& f̄ 0
;( f̄ c2 f̄ 0)2g into Eq.

~8!, one immediately obtains an interesting result

g51. ~9!

It should be noted thatg51 is universal, that is, independen
of the dimension. The value ofg for f̄ 0 avalanches is differ-
ent from those for thef 0 avalanche found in Ref.@6#, which
are 2.70 and 1.70 for 1D and 2D BS models, respectiv
Extensive simulations showg50.9960.01 and g50.98
60.01 for 1D and 2D BS models, respectively. Figure

FIG. 1. The average size of avalanches^S& vs (f̄ c2 f̄ 0) for ~a!
1D and ~b! 2D Bak-Sneppen evolution models. The asympto
slope yieldsg50.9960.01 and 0.9860.01, respectively.
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shows our simulation results, which confirms the univer
resultg51.

Higher powers ofb give new exact equations. Here w
present the first two:

]

]h S ^S2&h

^S&h
D52^S&h , ~10!

]

]h S ^S3&h

3^S&h
2

^S2&h
2

2^S&h
2D 5^S2&h . ~11!

Next we present the solution of the exact gap equation fof̄ 0

avalanches. Inserting the scaling relation̂S&F(s);@ f̄ c
2F(s)#21 into the equation and integrating, one obtains

D f̄ ~s!5 f̄ c2F~s!;S s

LdD 2r

5S s

LdD 21

, ~12!

wherer is the exponent of the relaxation to the attractor@6#.
Thus we obtainr51. Interestingly,r is also a universa
exponent for all dimensional BS models. It shows that
critical point (D f̄ 50) is approached algebraically with a
exponent21.

Up to now, we have obtained some exponents of co
sponding physical properties off̄ 0 avalanches:t, the ava-
lanche size distribution@10#; D, the avalanche dimensio
@10#; g, the average avalanche size@10#; and r, the relax-
ation to the attractor@6#. Recall another two exponents@6# n

and s, which are defined asr co;( f̄ c2 f̄ 0)2n and Sco5( f̄ c

2 f̄ 0)21/s, respectively. Herer co and Sco are referred to as
the cutoff of the spatial extent of avalanches~due to the limit
system size! and that of the avalanche size~due to the fact
that f̄ 0 is not chosen asf̄ c), respectively. It is natural to
establish some scaling relations of these exponents fof̄ 0
avalanches similar to those found in Refs.@6,12# for f 0 ava-
lanches. Nevertheless, these two types of avalanches m
fest similar fractal properties. Hence some common featu
should be shared by them. Integrating the equation^S&

5*1
( f̄ c2 f̄ 0)2(1/s)

SP(S, f̄ 0)dS and the scaling ^S&;( f̄ c

2 f̄ 0)21 results in

g5
22t

s
51. ~13!
l

e

-

ni-
es

Due to the compactness@6# of avalanches, we haveSco

;r co
D 5(D f )2nD; thus

n5
1

sD
5

1

~22t!D
. ~14!

Equations~11! and~12! establish scaling relations among th
critical exponents, and they imply that the self-organizat
time to reach the critical state is independent of the ini
configuration of the system. A system of sizeL reaches the
stationary state when@D f (s)#2n;L. It can be inferred from
Eqs.~11! and~12! that, if one choosest andD as two inde-
pendent exponents, other exponents can be expresse
terms of them. Among the six exponents mentioned abovt
andD can be numerically measured@10#, andg andr can be
analytically obtained, whilen ands are difficult to explore
despite the fact that some methods measuring the co
sponding exponents forf 0 avalanches were introduced i
Ref. @13#. Therefore, we can rely on the scaling relations a
values of the exponents obtained to predict the values on
and s. We predicts50.2 ~one dimension! and 0.275~two
dimensions!, n52.04 ~one dimension! and 1.17~two dimen-
sions!.

Comparing thef̄ 0 avalanche with thef 0 avalanche, we
find that the former is more readily treated. Two critical e
ponents can be analytically obtained, and are found to
universal for all dimensional BS models. Furthermore,
infinite hierarchy of exact equations and the exact gap eq
tions, together with their solutions, provide an exclusive
vestigation of the new type of avalanche. Another asse

the f̄ 0 avalanche is that it involves some information co

cerning the whole system. It can be concluded that thef̄ 0

avalanche does enable us to comprehend the complex sy
from an effective and different context. The weak point
this avalanche is that it loses some knowledge of individu
It is still unknown how these individual features will matte
It is worthwhile to investigate the avalanche dynamics f
ther in the future.
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